An algebraic description of Boolean functions
نویسندگان
چکیده
We compute the non-linearity of Boolean functions with Gröbner basis techniques. Moreover, we extend our approach to classify functions with maximum non-linearity.
منابع مشابه
Dually quasi-De Morgan Stone semi-Heyting algebras I. Regularity
This paper is the first of a two part series. In this paper, we first prove that the variety of dually quasi-De Morgan Stone semi-Heyting algebras of level 1 satisfies the strongly blended $lor$-De Morgan law introduced in cite{Sa12}. Then, using this result and the results of cite{Sa12}, we prove our main result which gives an explicit description of simple algebras(=subdirectly irreducibles) ...
متن کاملConstructing vectorial Boolean functions with high algebraic immunity based on group decomposition
In this paper, we construct a class of vectorial Boolean functions over F2n with high algebraic immunity based on the decomposition of the multiplicative group of F2n . By viewing F2n as G1G2 ∪ {0} (where G1 and G2 are subgroups of F2n , (#G1,#G2) = 1 and #G1 × #G2 = 2 − 1), we give a generalized description for constructing vectorial Boolean functions with high algebraic immunity. Moreover, wh...
متن کاملThe ring of real-valued functions on a frame
In this paper, we define and study the notion of the real-valued functions on a frame $L$. We show that $F(L) $, consisting of all frame homomorphisms from the power set of $mathbb{R}$ to a frame $ L$, is an $f$-ring, as a generalization of all functions from a set $X$ into $mathbb R$. Also, we show that $F(L) $ is isomorphic to a sub-$f$-ring of $mathcal{R}(L)$, the ring of real-valued continu...
متن کاملNew Construction of Even-variable Rotation Symmetric Boolean Functions with Optimum Algebraic Immunity
The rotation symmetric Boolean functions which are invariant under the action of cyclic group have been used as components of different cryptosystems. In order to resist algebraic attacks, Boolean functions should have high algebraic immunity. This paper studies the construction of even-variable rotation symmetric Boolean functions with optimum algebraic immunity. We construct ( / 4 3) n ...
متن کاملDually quasi-De Morgan Stone semi-Heyting algebras II. Regularity
This paper is the second of a two part series. In this Part, we prove, using the description of simples obtained in Part I, that the variety $mathbf{RDQDStSH_1}$ of regular dually quasi-De Morgan Stone semi-Heyting algebras of level 1 is the join of the variety generated by the twenty 3-element $mathbf{RDQDStSH_1}$-chains and the variety of dually quasi-De Morgan Boolean semi-Heyting algebras--...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007